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Today’s itinerary

1. Introduction

• What we’ll do today
• Icebreaker

2. Run-time testing with assertive

• assert functions
• is and has functions
• Case study: geomean

• Exercises

3. Development-time testing with testthat

• Creating unit tests
• Integrating tests into packages

• Exercises

4. Writing maintainable and testable code

• Don’t Repeat Yourself
• Keep It Simple, Stupid
• Fail Early, Fail Often

• Exercises

R Packages that you need today

Today, we’ll be using the following packages. You may wish to install them now,
if you haven’t get them already.

assertive, testthat, ggplot2, sig, Hmisc, data.table, plyr, dplyr, mice

The very short version

• Run-time testing is for checking that people using your code aren’t doing
stupid things.
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• Development-time testing is for checking that you didn’t do stupid things
when writing your code.

• If you break your code down into small pieces, it will usually be easier to
maintain and easier to test.

Run-time testing of code with assertive

assert functions

There are times when it is a good idea to check the state of your variables, to
ensure that they have the properties that you think they have. For example, if
you have a count variable, you might want to check that it is numeric, that all
the values are non-negative, and that all the values are whole numbers.
Base-R has a function called stopifnot that lets you perform such checks.

counts <- c(1, 2, 3, 4.5)
stopifnot(

is.numeric(counts),
all(counts >= 0),
isTRUE(all.equal(counts, round(counts)))

)

## Error: isTRUE(all.equal(counts, round(counts))) is not TRUE

This is OK, but the code isn’t that easy to read. Worse, the error messages that
it produces in the event of failure aren’t very user-friendly.
assertive provides lots of assert functions that provide checks for specific
conditions. (An assertion is software development jargon for a check.) They are
designed to make your code easier to read, and to return helpful error messages
to users in the event of a check failing.
Here’s the same example again, written in an assertive style.

library(assertive)
counts <- c(1, 2, 3, 4.5)
assert_is_numeric(counts)
assert_all_are_non_negative(counts)
assert_all_are_whole_numbers(counts)

## Error in eval(expr, envir, enclos): counts are not all whole numbers.
## There was 1 failure:
## Position Value Cause
## 1 4 4.5 fractional
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Here you see that the error message contains a human readable sentence, followed
by information on the values that caused problems, along with their positions
and reasons for failure.

is and has functions

Each of the assert functions has an underlying is or has function. For example,
assert_is_numeric calls is_numeric, assert_all_are_non_negative calls
is_non_negative, and so on.
Some is and has functions, such as is_numeric, return a single logical value.

is_numeric(1:6)

## [1] TRUE

is_numeric(letters)

## [1] FALSE
## attr(,"cause")
## [1] letters is not of type 'numeric'; it has class 'character'.

When the check passed, is_numeric returned TRUE, and when it failed,
is_numeric returned FALSE with a cause attribute explaining the problem.
Where is functions return a single value, they have a single corresponding
assert function prefixed by assert_. For example, is_numeric is paired with
assert_is_numeric.
Some is and has functions, such as is_non_negative, return a logical vector.

is_non_negative(rnorm(6))

## -0.687605702476876 -0.669164001253048 1.99914264432859
## FALSE FALSE TRUE
## 0.293517442709438 -0.417878025432502 -0.328072635233795
## TRUE FALSE FALSE
## attr(,"cause")
## [1] too low too low too low too low

is_non_negative returned a logical vector which was TRUE where the check
passed, and FALSE where the check failed. This time the cause attribute was
also vectorised, returning an empty string for the passes and a brief explanation
of the problem for the failures.
Where is functions return a vector, there are two corresponding assert
functions, prefixed assert_all_are_, and assert_any_are_. For exam-
ple, is_non_negative is paired with assert_all_are_non_negative and
assert_any_are_non_negative.
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Why do we use assertive?

The main alternative is assertthat. This is a much lighter weight package that
provides only the basics, like is.string, and is.dir.

What can assertive do?

The types of checks available in the assertive package can be grouped into a few
categories.

Testing types

You can test for a particular type of object using is_numeric, is_character,
is_matrix, is_data.frame, through to more obscure types like is_qr, is_name,
and is_relistable.

is_s4, is_atomic and is_recursive test properties of variables.

is_a_number, is_a_string, is_a_bool, etc. combine tests for types with
is_scalar (see below) to check for a single numeric/character/logical value
respectively.

Testing sizes

is_scalar tests for objects of length one, or with one element (this can be
different for lists; you choose the metric).

Similarly is_empty and is_non_empty test for objects of zero length/containing
zero elements.

More generally is_of_length and has_elements test for a particular
length/number of elements.

Testing missing values

You can test for NAs, NaNs, and NULLs using is_na, is_nan and is_null, or
their opposites is_not_na, is_not_nan and is_not_null.

Testing numbers

is_in_range tests if a number is in a numeric range, along with the
more specialised wrappers: is_in_open_range, is_in_closed_range,
is_in_left_open_range, is_in_right_open_range, is_positive, is_negative,is_non_positive,is_non_negative,is_proportionandis_percentage‘.

Finiteness can be tested with is_finite, is_infinite, is_positive_infinity
and is_negative_infinity.

is_odd and is_even test for those qualities, and are generalized by
is_divisible_by.

is_whole_number tests whether a number is an integer, give or take some
tolerance.
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is_real and is_imaginary test for real/imaginary numbers.

Testing attributes

Rows, columns and dimensions can be tested for using, has_rows, has_cols
and has_dims.

Similarly their names can be tested for using has_rownames, has_colnames,
has_dimnames and has_names.

Duplicates can be tested for using has_duplicates or its opposite
has_no_duplicates‘.

Attributes can be tested for using has_attributes and has_any_attributes.

Functions arguments can be tested using has_arg.

Model terms can be tested using has_terms.

Testing files and connections

is_dir tests if a path refers to an existing directory.

is_existing_file tests whether a file exists.

is_executable_file, is_readable_file, and is_writable_file test your
permissions to access a file (though they are based on file.access, which is
slightly unreliable on Windows).

is_connection tests whether an object is a connection, and there are many
specialized types including is_file_connection, is_fifo_connection,
is_pipe_connection, is_readable_connection, is_open_connection,
is_writable_connection, is_stdin, is_stdout and is_stderr.

Testing time

is_in_future and is_in_past test when a date-time object is.

Testing sets

is_set_equal tests if two vectors contain the same elements, regardless of order.

is_subset and is_superset test if one vector contains another.

Testing complex data types

is_email_address, is_credit_card_number, is_date_string, is_honorific,
is_ip_address, is_hex_color, is_cas_number and is_isbn_code check for

is_uk_car_licence, is_uk_national_insurance_number, is_uk_postcode
and is_uk_telephone_number test the United Kingdom-specific data types.

is_us_telephone_number, is_us_zip_code test the United States-specific data
types.
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Case study: calculating geometric means

By far the most common use of assertions is for checking input to functions.
Consider this function for calculating the geometric mean:

geomean <- function(x, na.rm = FALSE)
{

exp(mean(log(x), na.rm = na.rm))
}

In a statically-typed language, we could enforce x being a numeric vector. R’s
dynamic typing (while mostly helping us be more productive) gives us some rope
to hang ourselves with: x and na.rm can be absolutely anything. We need to
handle the cases when x is not numeric, or when x contains negative values, or
when na.rm is not a single logical value.
The built-in functions exp, mean and log have some of their own logic for
handling bad inputs, and it is possible to simply rely on that logic rather than
writing your own. For demonstration purposes, let’s see how they behave, and
then see if we can improve upon it.
If we pass a non-numeric x, we see:

geomean("a")

## Error in log(x): non-numeric argument to mathematical function

The error message is OK, but it since it is appearing to come from log(x), it
isn’t totally clear to the user where the problem originates. The assertive fix is
to include assert_is_numeric(x) in the function.
Where should this line go? In accordance with the first clause of the programming
principle “fail early, fail often”, the assertion belongs at the start of the function.

geomean2 <- function(x, na.rm = FALSE)
{

assert_is_numeric(x)
exp(mean(log(x), na.rm = na.rm))

}

geomean2("a")

## Error in geomean2("a"): x is not of type 'numeric'; it has class 'character'.

The geometric mean doesn’t make any mathematical sense for (real) negative
numbers, and will return NaN if the input contains any.
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geomean2(rnorm(20))

## Warning in log(x): NaNs produced

## [1] NaN

The warning here is not so informative (why were the NaNs produced?), and
appears to come from log(x). We could be strict and throw an error if there
are negative values by adding a call to assert_all_are_non_negative. To
replicate the base-R behaviour we can define custom actions based upon the
result of is_non_negative:

geomean3 <- function(x, na.rm = FALSE)
{

assert_is_numeric(x)
if(any(is_negative(x), na.rm = TRUE)) # Don't worry about NAs here
{

warning("x contains negative values, so the geometric mean makes no sense.")
return(NaN)

}
exp(mean(log(x), na.rm = na.rm))

}

geomean3(rnorm(20))

## Warning in geomean3(rnorm(20)): x contains negative values, so the
## geometric mean makes no sense.

## [1] NaN

For na.rm, the mean function coerces its input to be a logical value, warning if
the value’s length is more than one.

x <- rlnorm(20)
x[sample(20, 5)] <- NA
geomean(x, c(1.5, 0))

## Warning in if (na.rm) x <- x[!is.na(x)]: the condition has length > 1 and
## only the first element will be used

## [1] 0.9569963
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The warning about the length is OK, but again its source is not totally clear for
users. The coercion to logical happens silently, which isn’t ideal.

Again, we could be strict and throw an error when na.rm isn’t a scalar logical
value using assert_is_a_bool. (This is a compound assertion checking both
the type and the length of the object). In this case, to replicate the base-R
behaviour, we will use some utility functions provided by assertive.

geomean4 <- function(x, na.rm = FALSE)
{

assert_is_numeric(x)
if(!all(is_non_negative(x), na.rm = TRUE)) # Don't worry about NAs here
{

warning("x contains negative values, so the geometric mean makes no sense.")
return(NaN)

}
na.rm <- coerce_to(use_first(na.rm), "logical")
exp(mean(log(x), na.rm = na.rm))

}

use_first takes the first element of an object, warning if it has length more than
one. coerce_to checks and object’s class, then converts it to the requested
type, with a warning, using an appropriate as.* function if it exists, or as if it
doesn’t.

geomean4(x, c(1.5, 0))

## Warning: Only the first value of 'na.rm' will be used.

## Warning: Coercing use_first(na.rm) to class 'logical'.

## [1] 0.9569963

Whether to throw an error on bad input or fix it is personal preference and
depends upon context. For end-user functions should should usually try to be
flexible and fix things unless they’ve done something very silly. For lower-level
functions, you can often afford to be stricter.

Development time testing with the testthat pack-
age.

The assertions that we used in the run-time testing section are mainly used for
checking that your user’s haven’t broken your code. Development-time testing is
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more about checking that your code is gives the right answer in the first place.
In R, these checks usually happen at the level of a function. That is, you have a
test that calls a function, and checks whether the return value is the same as
what you expected. The computer science jargon name for this sort of test is a
unit test.

Why do we use testthat?

The main alternative is RUnit. This follows the syntax of xUnit more closely, so
if you’ve done any unit testing in other programming languages, then it’s a bit
easier to learn. However, RUnit doesn’t have test caching, so it’s much slower,
especially for large projects, and it is missing some key features like checking
warnings. You can automatically convert RUnit tests to testthat tests using the
runittotestthat package.

The basic unit test structure

Consider a simple function for calculating hypotenuses of right angled triangles
(on a flat surface).

hypotenuse <- function(x, y)
{

sqrt(x ^ 2 + y ^ 2)
}

To test this, we can use some triangles where we know the answer.

library(testthat)
test_that(

"hypotenuse, with inputs x = 3 and y = 4, returns 5",
{

expected <- 5
actual <- hypotenuse(3, 4)
expect_equal(actual, expected)

}
)

The basic test structure often looks very similar to this. The first argument is a
description of the test, to remind what the point of it is when you come back
to it a few months later, and the test code usually contains those three lines:
declare what you think the answer should be, calculate it, and then check that
the two numbers are equal.
As well as testing that for correct answers, we can test that the behaviour is as
expected when bad inputs are passed. This is even easier than our first test.
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test_that(
"hypotenuse, with no inputs, throws an error",
{

expect_error(
hypotenuse(),
'argument "x" is missing, with no default'

)
}

)

Other common variants of expectations are:

• expect_true, expect_false and expect_null, which are shortcuts for
checking those common return types.

• expect_warning, expect_message and expect_output, for testing feed-
back, which work like expect_error.

You may also occasionally come across these rare expectations:

• expect_less_than and expect_greater_than, for numeric inequalities.
• expect_identical, a stricter check than expect_equal.
• match, for matching strings using regular expressions.
• is, for checking the class of variables.

Tests with multiple expectations

You can combine multiple expectations into a single test. This is a common
thing to do when checking warnings.

test_that(
"min, with a zero-length input, returns infinity with a warning",
{

expected <- Inf
expect_warning(

actual <- min(numeric()),
"no non-missing arguments to min; returning Inf"

)
expect_equal(actual, expected)

}
)
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Labelling test error messages

In the event that a test fails, testhat does reasonably well at explaining what the
problem is. Sometimes however, a little more information can be informative
to discover what went wrong, and testthat allows you to provide additional
information in the failure message.
Consider this test that doesn’t work.

test_that(
"hypotenuse, with a NULL input, returns NULL",
{

expect_null(hypotenuse(3, NULL))
}

)

## Error: Test failed: 'hypotenuse, with a NULL input, returns NULL'
## Not expected: hypotenuse(3, NULL) isn't null.

On the face of it, the test seemed reasonable: put NULL into the function and get
NULL out again. The test failure message correctly tells us that hypotenuse(3,
NULL) isn’t null, but it leaves us hanging with the question: what did the function
return? By customising the label argument, we can find out straight away. In
the next chunk of code, deparse turns a value into the code that would generate
that value.

test_that(
"hypotenuse, with a NULL input, returns NULL",
{

actual <- hypotenuse(3, NULL)
label <- paste("hypotenuse(3, NULL) =", deparse(actual))
expect_null(actual, label = label)

}
)

## Error: Test failed: 'hypotenuse, with a NULL input, returns NULL'
## Not expected: hypotenuse(3, NULL) = numeric(0) isn't null.

Integrating tests into packages

The file structure of R packages is quite strict. In the simplest case, at the top
level, you have files named DESCRIPTION (containing the name, version, and
authors of the package, amongst other things), NAMESPACE (containing the names
of the functions to export to users), and directories R (containing your R code)
and man (containing help files for your functions and datasets.
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testthat tests go in a directory tests/testthat. You also need a file named
tests/testthat.R, which contains the following code:

library(testthat)
library(yourpackage)
test_package("yourpackage")

Then whenever you check your package (using R CMD check or devtools::check),
R will automatically run all the tests.

Testing complex objects

Where expected is a complex object, say an S3/S4/Reference/R6 class or an
environment, it is very easy to end up with very complex tests containing many
expectations.

For example, if you are testing a linear modelling function, the resulting model
has a lot of components.

model <- lm(dist ~ speed, cars)
str(model)

## List of 12
## $ coefficients : Named num [1:2] -17.58 3.93
## ..- attr(*, "names")= chr [1:2] "(Intercept)" "speed"
## $ residuals : Named num [1:50] 3.85 11.85 -5.95 12.05 2.12 ...
## ..- attr(*, "names")= chr [1:50] "1" "2" "3" "4" ...
## $ effects : Named num [1:50] -303.914 145.552 -8.115 9.885 0.194 ...
## ..- attr(*, "names")= chr [1:50] "(Intercept)" "speed" "" "" ...
## $ rank : int 2
## $ fitted.values: Named num [1:50] -1.85 -1.85 9.95 9.95 13.88 ...
## ..- attr(*, "names")= chr [1:50] "1" "2" "3" "4" ...
## $ assign : int [1:2] 0 1
## $ qr :List of 5
## ..$ qr : num [1:50, 1:2] -7.071 0.141 0.141 0.141 0.141 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:50] "1" "2" "3" "4" ...
## .. .. ..$ : chr [1:2] "(Intercept)" "speed"
## .. ..- attr(*, "assign")= int [1:2] 0 1
## ..$ qraux: num [1:2] 1.14 1.27
## ..$ pivot: int [1:2] 1 2
## ..$ tol : num 1e-07
## ..$ rank : int 2
## ..- attr(*, "class")= chr "qr"
## $ df.residual : int 48
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## $ xlevels : Named list()
## $ call : language lm(formula = dist ~ speed, data = cars)
## $ terms :Classes 'terms', 'formula' length 3 dist ~ speed
## .. ..- attr(*, "variables")= language list(dist, speed)
## .. ..- attr(*, "factors")= int [1:2, 1] 0 1
## .. .. ..- attr(*, "dimnames")=List of 2
## .. .. .. ..$ : chr [1:2] "dist" "speed"
## .. .. .. ..$ : chr "speed"
## .. ..- attr(*, "term.labels")= chr "speed"
## .. ..- attr(*, "order")= int 1
## .. ..- attr(*, "intercept")= int 1
## .. ..- attr(*, "response")= int 1
## .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## .. ..- attr(*, "predvars")= language list(dist, speed)
## .. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
## .. .. ..- attr(*, "names")= chr [1:2] "dist" "speed"
## $ model :'data.frame': 50 obs. of 2 variables:
## ..$ dist : num [1:50] 2 10 4 22 16 10 18 26 34 17 ...
## ..$ speed: num [1:50] 4 4 7 7 8 9 10 10 10 11 ...
## ..- attr(*, "terms")=Classes 'terms', 'formula' length 3 dist ~ speed
## .. .. ..- attr(*, "variables")= language list(dist, speed)
## .. .. ..- attr(*, "factors")= int [1:2, 1] 0 1
## .. .. .. ..- attr(*, "dimnames")=List of 2
## .. .. .. .. ..$ : chr [1:2] "dist" "speed"
## .. .. .. .. ..$ : chr "speed"
## .. .. ..- attr(*, "term.labels")= chr "speed"
## .. .. ..- attr(*, "order")= int 1
## .. .. ..- attr(*, "intercept")= int 1
## .. .. ..- attr(*, "response")= int 1
## .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## .. .. ..- attr(*, "predvars")= language list(dist, speed)
## .. .. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
## .. .. .. ..- attr(*, "names")= chr [1:2] "dist" "speed"
## - attr(*, "class")= chr "lm"

To test everything: the coefficients, the fitted values, the residuals, the call, and
all the obscure little parameters contained in this object, takes a lot of time and
effort, and will result in difficult to maintain testing code. So how much do you
need to test in a case like this?
The answer depends upon what you are trying to test. If you are the author of
the lm (or other modelling) function, then you need to make sure that it returns
a particular structure, and some in depth testing is necessary. However, if you
are focussed on analysing some data, and you have a function that wraps lm,
then you probably only need to test that the coefficients are what you expected.
That is, the “keep it simple, stupid” principle applies here: don’t write overly
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complicated tests if you don’t have to.

Writing maintainable and testable code

Don’t Repeat Yourself

Every piece of knowledge must have a single, unambiguous, authori-
tative representation within a system.

c2.com

Or equivalently,

Duplicated code is bad code: anything that appears in two or more
places in a program will eventually be wrong in at least one.

softwarecarpentry.org

An example

You’ve created some plots to gain insight into the diamond market, but when
you show them to your boss, she complains that the tasteful royal blue color
scheme that you chose doesn’t follow corporate marketing procedures, and that
you should have used lime green instead.

library(ggplot2)

(scatter_price_vs_carat <- ggplot(diamonds, aes(carat, price)) +
geom_point(color = "royalblue")

)

(density_cut_vs_price <- ggplot(diamonds, aes(price, color = cut)) +
geom_density(color = "royalblue")

)

(bar_clarity_by_cut <- ggplot(diamonds, aes(clarity)) +
geom_bar(fill = "royalblue") +
facet_wrap(~ cut)

)
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Figure 1: plot of chunk ggplot2_dupes
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Figure 2: plot of chunk ggplot2_dupes
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Figure 3: plot of chunk ggplot2_dupes
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Figure 4: plot of chunk ggplot2_dupes
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(bar_clarity_by_color <- ggplot(diamonds, aes(clarity)) +
geom_bar(fill = "royalblue") +
facet_wrap(~ color)

)

As the code is currently written, to change the color, we have to change code in
every single plot. What will inevitably happen is that after changing the color in
two plots, we’ll be phoned by Irene from Accounts who wants something urgently
and then we’ll forget to change the other plots and things will be inconsistent.
Our goal is to have ways of changing things in a single place.
Idea 1: Use variables rather than hard-coded values

If we change the code to define the color in a variable, then we only need to
change the value in that assignment line.

library(ggplot2)

col <- "royalblue" # <- change this to "limegreen"

(scatter_price_vs_carat <- ggplot(diamonds, aes(carat, price)) +
geom_point(color = col)

)

(density_cut_vs_price <- ggplot(diamonds, aes(price, color = cut)) +
geom_density(color = col)

)

(bar_clarity_by_cut <- ggplot(diamonds, aes(clarity)) +
geom_bar(fill = col) +
facet_wrap(~ cut)

)

(bar_clarity_by_color <- ggplot(diamonds, aes(clarity)) +
geom_bar(fill = col) +
facet_wrap(~ color)

)

Idea 2: For values that you want to change everywhere, update global
settings.

If we have to use a corporate color scheme in every plot, it makes sense to set
the default colors to this value. For just four plots, it isn’t worth bothering with,
but if you have hundreds of plots, then this will save you some time.

library(ggplot2)
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col <- "royalblue"
# Currently need to use Brit spelling for aesthetic names
update_geom_defaults("point", list(colour = col))
update_geom_defaults("density", list(colour = col))
update_geom_defaults("bar", list(fill = col))

# Now we can drop the code specifying the colors
(scatter_price_vs_carat <- ggplot(diamonds, aes(carat, price)) +

geom_point()
)

(density_cut_vs_price <- ggplot(diamonds, aes(price, color = cut)) +
geom_density()

)

(bar_clarity_by_cut <- ggplot(diamonds, aes(clarity)) +
geom_bar() +
facet_wrap(~ cut)

)

(bar_clarity_by_color <- ggplot(diamonds, aes(clarity)) +
geom_bar() +
facet_wrap(~ color)

)

Idea 3: For bigger repetitions, it’s better to wrap the contents into a
function

The third and fourth plots share a lot of code, so we can avoid repetition by
wrapping it into a function. The code for the last two plots can be simplified to:

barplot_diamond_clarity <- function(facet_var)
{

facet_formula <- as.formula(paste("~", facet_var))
ggplot(diamonds, aes(clarity)) +

geom_bar() +
facet_wrap(facet_formula)

}

bar_clarity_by_cut <- barplot_diamond_clarity("cut")
bar_clarity_by_color <- barplot_diamond_clarity("color")

Idea 4: For code to be reused across projects, include in a package.

This is beyond the scope of this example, but if you want to re-use code across
projects, then put it in a package.
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Keep It Simple, Stupid

On a good day, you can keep 7 (give or take 2) things in your working
memory

Millers law, paraphrased

Miller’s law is a result from cognitive psychology that dates back to the 1950s.
Since R is a high-level programming language where one line of code very roughly
translates into one useful thought, I present the Cotton corollary:

Most of your R functions should be seven lines or less

To hammer a point home, it’s perfectly acceptable for a function to be one line
long. These are usually the easiest kind of function to debug.

Simplifying function interfaces

As well as keeping functions short, the other side of keeping things simple is
to make it to call your function. Making functions do more things makes their
interface harder to use, and means that you need more tests for them.

The sig package has a function to find all the functions in an environment (or
package) that are very long or have too many inputs. The Hmisc package is a
particularly bad offender.

library(sig)
sig_report(pkg2env(Hmisc))

## The environment contains 539 variables of which 536 are functions.
## Distribution of the number of input arguments to the functions:
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
## 2 70 117 91 42 46 26 19 16 18 18 10 8 4 7 2 2 5
## 18 19 20 21 22 24 25 26 27 29 30 32 33 35 52 66
## 4 4 3 6 3 2 1 1 2 1 1 1 1 1 1 1
## These functions have more than 10 input args:
## [1] areg.boot aregImpute
## [3] bpplotM bpplt
## [5] ciapower cleanup.import
## [7] confbar cpower
## [9] csv.get curveRep
## [11] datadensity.data.frame dotchart2
## [13] dotchart3 Dotplot
## [15] Ecdf.default Ecdf.formula
## [17] errbar event.chart
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## [19] event.history fit.mult.impute
## [21] format.df formatCats
## [23] formatCons ggplot.summaryP
## [25] histSpike histSpikeg
## [27] knitrSet labcurve
## [29] latex.default latex.describe
## [31] latex.describe.single latex.responseSummary
## [33] latex.summary.formula.response latex.summary.formula.reverse
## [35] latex.summaryM latexDotchart
## [37] panel.bpplot panel.Ecdf
## [39] panel.plsmo panel.xYplot
## [41] plot.curveRep plot.rm.boot
## [43] plot.summary.formula.response plot.summary.formula.reverse
## [45] plot.summaryM plot.summaryP
## [47] plot.summaryS plotMultSim
## [49] plsmo print.char.list
## [51] print.char.matrix print.summary.formula.reverse
## [53] print.summaryM putKey
## [55] putKeyEmpty rcspline.plot
## [57] rcspline.restate redun
## [59] responseSummary rlegend
## [61] rm.boot sas.get
## [63] scat1d stata.get
## [65] summary.formula summaryD
## [67] summaryM summaryRc
## [69] transcan upData
## [71] xYplot
## Distribution of the number of lines of the functions:
## 1 2 [3,4] [5,8] [9,16] [17,32]
## 0 52 13 61 98 112
## [33,64] [65,128] [129,256] [257,512] [513,1024]
## 94 64 31 10 1
## These functions have more than 50 lines:
## [1] areg areg.boot
## [3] aregImpute aregTran
## [5] binconf bpplotM
## [7] bpplt bystats
## [9] bystats2 ciapower
## [11] cleanup.import cnvrt.coords
## [13] confbar contents.data.frame
## [15] cpower curveRep
## [17] curveSmooth cut2
## [19] datadensity.data.frame dataframeReduce
## [21] dataRep describe.vector
## [23] dotchart2 dotchart3
## [25] drawPlot Ecdf.data.frame
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## [27] Ecdf.default errbar
## [29] event.chart event.history
## [31] fit.mult.impute format.df
## [33] formatCats formatCons
## [35] formatTestStats Function.areg.boot
## [37] getRs ggplot.summaryP
## [39] hdquantile hist.data.frame
## [41] histbackback histSpike
## [43] histSpikeg hoeffd
## [45] html.contents.data.frame improveProb
## [47] impute.transcan inverseFunction
## [49] invertTabulated knitrSet
## [51] labcurve largest.empty
## [53] latex.default latex.describe
## [55] latex.describe.single latex.summary.formula.cross
## [57] latex.summary.formula.response latex.summary.formula.reverse
## [59] latex.summaryM latex.summaryP
## [61] latexDotchart list.tree
## [63] logrank matchCases
## [65] matxv medvPanel
## [67] na.detail.response nobsY
## [69] ordGridFun panel.bpplot
## [71] panel.Dotplot panel.Ecdf
## [73] panel.plsmo panel.xYplot
## [75] plot.areg.boot plot.curveRep
## [77] plot.drawPlot plot.rm.boot
## [79] plot.summary.formula.response plot.summary.formula.reverse
## [81] plot.summaryM plot.summaryP
## [83] plot.summaryS plotMultSim
## [85] plsmo predict.transcan
## [87] print.char.list print.char.matrix
## [89] print.contents.data.frame print.describe.single
## [91] print.redun print.summary.formula.cross
## [93] print.summary.formula.response print.summary.formula.reverse
## [95] print.summaryM putKey
## [97] Quantile2 rcspline.eval
## [99] rcspline.plot rcspline.restate
## [101] redun replace.substring.wild
## [103] reShape responseSummary
## [105] rlegend rm.boot
## [107] sas.get sasxport.get
## [109] scat1d spearman2.default
## [111] spss.get stata.get
## [113] stratify strgraphwrap
## [115] summarize summary.areg.boot
## [117] summary.formula summaryD
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## [119] summaryM summaryP
## [121] summaryRc summaryS
## [123] symbol.freq t.test.cluster
## [125] transcan upData
## [127] varclus wtd.table

Once you know which functions that you need to simplify, how do you go about
making them simpler?

There’s a rather obvious piece of advice (“You Ain’t Gonna Need It”) that states
that you shouldn’t write code for features that you don’t need.

Always implement things when you actually need them, never when
you just foresee that you need them.

c2.com

Assuming that you’ve only implemented what you need to implement, and it’s
still a bit tricky, how can you make it easier to use? Let’s take a look at a few
complicated functions, and see how they manage complexity.

Idea 1: Pass arguments for advanced functionality to another function

One technique used reduce the complexity of function signatures is to force
advanced arguments to be passed to another function that checks those arguments
and returns them as a list. The grid package makes heavy use of this technique.
We’ll use the sig package to look at the function signature.

library(grid)
sig(pointsGrob)

## pointsGrob <- function(x = stats::runif(10), y = stats::runif(10), pch =
## 1, size = unit(1, "char"), default.units = "native", name =
## NULL, gp = gpar(), vp = NULL)

In the function signature for many of the functions in grid, you see gp = gpar().
gpar just checks that its inputs are sensible, then returns them as a list:

gpar(col = "red", cex = 3)

## $col
## [1] "red"
##
## $cex
## [1] 3
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You can use them as follows:

pointsGrob(1:10, runif(10), gp = gpar(col = "red", cex = 3))

## points[GRID.points.896]

This allows all the argument checking to be written once (in gpar) rather than
appearing in every grob function.

Idea 2: Having wrapper functions for specific use cases

The read.table function in the utils package is pretty complicated. It needs
to cope with a lot of variation in file formats, so it necessarily has a lot of
arguments.

sig(read.table)

## read.table <- function(file, header = FALSE, sep = "", quote = ""'", dec =
## ".", numerals = c("allow.loss", "warn.loss", "no.loss"),
## row.names, col.names, as.is = !stringsAsFactors, na.strings =
## "NA", colClasses = NA, nrows = -1, skip = 0, check.names = TRUE,
## fill = !blank.lines.skip, strip.white = FALSE, blank.lines.skip
## = TRUE, comment.char = "#", allowEscapes = FALSE, flush = FALSE,
## stringsAsFactors = default.stringsAsFactors(), fileEncoding =
## "", encoding = "unknown", text, skipNul = FALSE)

The utils package also provides four wrapper functions for the most common
cases: read.csv and read.delim for reading comma and tab delimited files
respectively, and their variants read.csv2 and read.delim2 which use European-
style commas for decimal places.

Each of the wrapper functions provides default arguments suitable for their
specific use-case, meaning that the user doesn’t have to bother setting them.

sig(read.csv)

## read.csv <- function(file, header = TRUE, sep = ",", quote = """, dec =
## ".", fill = TRUE, comment.char = "", ...)

sig(read.delim)

## read.delim <- function(file, header = TRUE, sep = " ", quote = """, dec =
## ".", fill = TRUE, comment.char = "", ...)

sig(read.csv2)
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## read.csv2 <- function(file, header = TRUE, sep = ";", quote = """, dec =
## ",", fill = TRUE, comment.char = "", ...)

sig(read.delim2)

## read.delim2 <- function(file, header = TRUE, sep = " ", quote = """, dec =
## ",", fill = TRUE, comment.char = "", ...)

Idea 3: Auto-guessing defaults

fread in the data.table package is an attempt at improving on ‘read.table.
While the focus is mainly on the speed of reading files, it is interesting to see
how the authors have tried to improve on speed of usage. The function signature
isn’t much simpler:

library(data.table)
sig(fread)

## fread <- function(input = "", sep = "auto", sep2 = "auto", nrows = -1,
## header = "auto", na.strings = "NA", stringsAsFactors = FALSE, verbose
## = getOption("datatable.verbose"), autostart = 30, skip = -1, select =
## NULL, drop = NULL, colClasses = NULL, integer64 =
## getOption("datatable.integer64"), showProgress =
## getOption("datatable.showProgress"), data.table =
## getOption("datatable.fread.datatable"))

fread does however make its usage easier (and hence faster) than read.table.
It’s trick is to do a lot of automated guesswork as to what arguments to use. For
example, rather than having to look in your file and see what the separator is, it
reads a few lines and chooses a value that seems sensible. So you almost never
need to use the sep argument. Similarly, there is smarter guessing of column
class types and the number of rows.

Idea 3: Split functionality into many functions

Unix has a well-known philosophical standpoint that programs should

Do One Thing and Do It Well

Doug McIlroy, 1978

In the plyr package, ddply is very powerful, but the interface takes a while to
learn. This next example, gets the mean weight of chickens by feed group.

library(plyr)
ddply(chickwts, .(feed), summarize, MeanWeight = mean(weight))
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## feed MeanWeight
## 1 casein 323.5833
## 2 horsebean 160.2000
## 3 linseed 218.7500
## 4 meatmeal 276.9091
## 5 soybean 246.4286
## 6 sunflower 328.9167

This is already quite complex, but ddply also allows you to do other tasks like
adding additional columns to the data, or calculating summary stats on multiple
columns simultaneously. The dplyr approach, which (mostly) replaces plyr, is
to split the functionality into several different functions. In this next example,
%>% is the pipe operator, which passes the result of an expression into the first
argument of the next function, allowing you to join multiple commands together.

library(dplyr)
chickwts %>%

group_by(feed) %>%
summarize(MeanWeight = mean(weight))

## Source: local data frame [6 x 2]
##
## feed MeanWeight
## 1 casein 323.5833
## 2 horsebean 160.2000
## 3 linseed 218.7500
## 4 meatmeal 276.9091
## 5 soybean 246.4286
## 6 sunflower 328.9167

Cyclomatic complexity

The cyclomatic complexity number (CCN) is a measure of how many
paths there are through a method. It serves as a rough measure of
code complexity and as a count of the minimum number of test cases
that are required to achieve full code-coverage of the method.

rkcole.com
Or,

Cyclomatic complexity measures the number of linearly independent
paths through the method, which is determined by the number and
complexity of conditional branches. A low cyclomatic complexity
generally indicates a method that is easy to understand, test, and
maintain.
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microsoft.com

As well as keeping functions short, another good idea is to reduce the number
of possible paths through your code. Whenever you include if or switch
statements, or loops, then you increase the number of possible ways that the
function can run, and you make it harder to reason about what your code is
doing.

The is a measure of the number of paths through your code called cyclomatic
complexity, though it isn’t well defined for R code. In the simplest case, we can
write a function where there is only one path to take.

cyclo_single_path <- function()
{

message("Hello World!")
}

Let’s increase the complexity by including an if statement.

cyclo_if <- function(condition)
{

if(condition)
{

message("Hello World!")
}

}

In most programming languages, this has a cyclomatic complexity of two: you
can pass either TRUE or FALSE to the condition, and it will change the behaviour.
However in R, you can also pass NA, which throws an error, so the cyclomatic
complexity is arguably three. (You can also pass numbers or strings or logical
vectors with length greater than one, but these cases always resolve back to one
of the three cases of TRUE/FALSE/NA.)

switch statements have a cyclomatic complexity of the number of choices, plus
one for the default case (in this case when the data is NA), and arguably another
one for the case of errors when you have bad inputs. The following example has
a cyclomatic complexity of eight or nine.

cyclo_switch <- function(date)
{

switch(
weekdays(date),
Monday = message("The day is Monday!"),
Tuesday = message("The day is Tuesday!"),
Wednesday = message("The day is Wednesday!"),
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Thursday = message("The day is Thursday!"),
Friday = message("The day is Friday!"),
Saturday = message("The day is Saturday!"),
Sunday = message("The day is Sunday!"),
message("The input date is missing")

)
}

How to reduce cyclomatic complexity:

1. Due to R’s troolean logic, dynamic typing, and lack of scalar types, there
are a lot of “bad” cases, so it is good practise to check that you genuinely
have a scalar logical value to pass to an if statement, as early as possible
in your functions.

2. Nested if statements of loops quickly increase the cyclomatic complexity
of the code. Try to avoid writing that sort of code.

3. Early returns for edge cases can be very useful; a typical code pattern
looks like this:

my_function <- function(x)
{

if(is.null(x))
{

warning("x is NULL, returning 0")
return(0)

}
# Code for usual non-null case of x

}

4. Refactoring the function into smaller functions reduces complexity until it
doesn’t.

Fail Early, Fail Often

In order to make sure that your code gets the right answer, you need to have
error-handling code that notifies you if something has gone wrong. You may
wonder, where to put this error handling code. It turns out that there’s a very
well established answer:

Make each module fail fast – either it does the right thing or it stops.

Jim Gray, 1985
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As soon as you can detect that there is a problem, you should correct that
problem or throw an error (fail). That’s the “fail early” (or “fail fast”) part.

The “fail often” part means that you need lots of checks to ensure the integrity
of your code. This is especially true of R code: the flexibility of the language
gives you a lot of scope for things going wrong.

Writing good error messages

I’m sure you’ve had the problem of a trying to figure out why a really obscure
error message is occurring. In R, most code involving non-standard evaluation
is good for generating bad error messages:

library(ggplot2)
ggplot(cars, aes(spped, dist)) + geom_point()

## Error in eval(expr, envir, enclos): object 'spped' not found

This is hardly the worst offender, but it’s still a long way from the explaining
the real cause of the problem: “spped” is not one of the columns in the cars
dataset; it should have read “speed”.

If we apply our “fail early” principle, when is the earliest that we could handle
this potential error?

We know which columns are in the dataset (and hence which columns can be
used for aesthetics) when ggplot is called, so the check should come quite soon
after that function is called.

What would this check look like? Well, we want to take each of the variables
passed as a mapping (inside the aes function), convert them to strings, and
check that they are all column names of the data frame. If that isn’t true, we
want to give an error message that explains the problem in a way that tells the
person reading it exactly what the problem is using a real sentence.

check_aesthetics_are_in_data <- function(mapping, data)
{

aesthetics <- sapply(mapping, deparse)
are_the_aesthetics_present <- aesthetics %in% colnames(data)
if(!all(are_the_aesthetics_present))
{

stop(
"The aesthetics ",
toString(sQuote(aesthetics[!are_the_aesthetics_present])),
" are not columns in the dataset ",
deparse(substitute(data)),
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"."
)

}
}
check_aesthetics_are_in_data(aes(spped, dist), cars)

## Error in check_aesthetics_are_in_data(aes(spped, dist), cars): The aesthetics 'spped' are not columns in the dataset cars.

Of course, nobody has time to write all this sort of boilerplate code for every
function, especially not enough times to fulfil the “fail often” part of the phrase.

That’s why the assertive package exists: to provide pre-canned checks for the
few hundred most common error types.

31


	Testing R Code by Richie Cotton
	Today's itinerary
	R Packages that you need today
	The very short version

	Run-time testing of code with assertive
	assert functions
	is and has functions
	Why do we use assertive?
	What can assertive do?
	Case study: calculating geometric means

	Development time testing with the testthat package.
	Why do we use testthat?
	The basic unit test structure
	Tests with multiple expectations
	Labelling test error messages
	Integrating tests into packages
	Testing complex objects


	Writing maintainable and testable code
	Don't Repeat Yourself
	An example

	Keep It Simple, Stupid
	Simplifying function interfaces
	Cyclomatic complexity

	Fail Early, Fail Often
	Writing good error messages



