92 058 gl d IS

Welll Cornell Medical College in Qatar

Member of Qatar Foundation

Testing R Code

Richie Cotton, June 2015

bitly.com/cottontestingr

Today's ltinerary

1. Introduction

2. Run-time testing with assertive
2.5 Tea and biscuits, maybe cake

3. Development-time testing with
testthat

4. Writing maintainable and testable
code (depending on timing)

The very short version

* Run-time testing Is for checking that people using
your code aren't doing stupid things.

* Development-time testing is for checking that
you didn't do stupid things when writing your
code.

o [f you break your code down into small pieces, it
will usually be easier to maintain and easier to
test.

NEMEWENEIE Il et

—— Run-time
,' testing
v with
assertive

/

\

check that counts is a numeric vector of
non-negative, whole numbers

counts <- c(1, 2, 3, 4.5)

check that counts is a numeric vector of
non-negative, whole numbers

counts <- c(1, 2, 3, 4.5)
stopifnot(

check that counts i1s a numeric vector of
non-negative, whole numbers

counts <- c(1, 2, 3, 4.5)
stopifnot(
is.numeric(counts)

non-negative numbers

counts <- c(1, 2, 3, 4.5)

stopifnot(
is.numeric(counts),
all(counts >= 0)

whole numbers

counts <- c(1, 2, 3, 4.5)
stopifnot(
is.numeric(counts),
all(counts »>= 0),
isTRUE(all.equal(counts, round(counts)))
)

check that counts is a numeric vector of
non-negative, whole numbers

counts <- c(1, 2, 3, 4.5)

stopifnot(
is.numeric(counts),
all(counts »>= 0),

isTRUE(all.equal(counts, round(counts)))
)
Error: isTRUE(all.equal(counts,

round(counts))) is not TRUE

check that counts is a numeric vector of
non-negative, whole numbers

counts <- c(1, 2, 3, 4.5)
assert _is numeric(counts)
assert _all are non_negative(counts)
assert all are whole numbers(counts)

check that counts is a numeric vector of
non-negative, whole numbers

counts <- c(1, 2, 3, 4.5)

assert _is numeric(counts)

assert _all are non_negative(counts)

assert all are whole numbers(counts)

Error: counts are not all whole numbers.
There was 1 failure:

Position Value Cause

1 4 4.5 fractional

is numeric(1:6)
[1] TRUE

is numeric(letters)

[1] FALSE

attr(,"cause”

[1] letters is not of type 'numeric';
1t has class 'character’.

is numeric(1:6)
[1] TRUE

is numeric(letters)

[1] FALSE

attr(,"cause”

[1] letters 1is not of type 'numeric’;
1t has class 'character'.

assert is numeric(1:6)
assert _is numeric(letters)

Error: letters is not of type 'numeric’;
1t has class 'character'.

is _non_negative(c(-1, 9, 1, NA))

H# -1 %) 1 <NA>

FALSE TRUE TRUE NA

attr(,"cause"

[1] too low missing

assert_any _are _non_negative(c(-1, 0, 1, NA))

assert _all are non negative(c(-1, 9, 1, NA))

Error: c(-1, 9, 1, NA) are not all non-negative.
There were 2 failures:

Position Value Cause

##t 1 1 -1 too low

HHt 2 4 <NA> missing

lesting Variable Types

Check variable types
is_numeric, 1is_character, 1is data.frame, is gr
and many more

Check properties of variables
is s4, is atomic, is recursive, is language

Combine variable type check with is_scalar
is _a number, is a string, 1is a bool, etc.

Testing Variable Sizes

Check variable has length one, or one element
is _scalar

Check length/n elements zero/not zero
is_empty, is _non_empty

Generdlization
is _of length, has elements

Testing Missing Values

Check for NA, NaN, and NULL
is na, 1s nan, 1is null

The opposite checks
is not na, 1s not nan, is not null

Testing Number Ranges

Check variable is in a range
is _in_range

Control edges
is _in_open range, is in closed range,
is in left open range, is in right open_range

Specific common ranges

is positive, 1s negative,

1s _non_positive, 1s non negative,
is _proportion and 1is_percentage

Tlesting Number Properties

Check infiniteness
is finite, 1is infinite, 1s positive infinity,
is negative infinity

Check oddness
is odd, 1s even, 1is divisible by,
is whole number

Check complexity
is _real, 1s imaginary

Testing Attributes

Check dimensions and their names

has rows, has cols, has dims, has rownames,
has colnames, has_dimnames, has_nhames

Check duplication
has duplicates, has no _duplicates

Check attributes
has _attributes, has any attributes

Testing Files and Connections

Check file and dir existence
is _existing file, is dir

Check file permissions (dubious under Windows)

is _executable file, 1is readable file,
is writable file

Check attributes

is _connection, is file connection,

is fifo connection, 1s open connection,
is writable connection, 1is stdin, etc.

Testing Times

Check string formatted correctly
is date string

Check time relative to now
is _in future, is in past

Testing Sets

Check same elements, whatever order
is set equal

Check sets contained in one another
is _subset, 1s superset

Testing Complex Data Types

Check misc types

is email address, is credit card number,
is _honorific, is_ip address, is _hex color,
is _cas_number, 1is isbn code

Check UK types

is uk car licence, 1is _uk postcode,
is uk _national insurance_number,
is uk telephone number

Check US types
is _us_telephone_number, 1s us zip code

Testing The Setup

Check operating system
is _windows, 1is linux, 1is_mac,
is solaris, 1s bsd, 1s unix

Check R version
is r, 1s r_devel, is r stable, is r alpha,
is r patched, is current_r, etc.

Check R's capabilities
r_has png capability, r_has tcltk capability

More Testing The Setup

Check decimal point convention
is _comma_for_decimal point,
is _period for_decimal point

Check how R is run
is slave r, 1s interactive, 1is batch mode,
is 64 bit, is rstudio, 1s revo r, 1s architect

Check system tool availability
r_can_compile code, r can_build translations

Testing Code

Check code properties
is debugged, is valid variable name,
is_error_ free, is valid r_ code

geomean <- function(x, na.rm = FALSE)

{
¥

exp(mean(log(x), na.rm = na.rm))

geomean("a")
Error in log(x): non-numeric argument
to mathematical function

assert _is numeric(x)

geomean2("a")
Error: x is not of type 'numeric'; it has
class 'character'.

geomean2 <- function(x, na.rm = FALSE)
{
assert _is numeric(x)
exp(mean(log(x), na.rm = na.rm))

¥

geomean2(rnorm(20))
Warning in log(x): NaNs produced

[1] NaN

if(any(is_negative(x), na.rm = TRUE))
!
warning("x contains negative values, so
the geometric mean makes no sense.")
return(NaN)

}

geomean3(rnorm(20))

Warning in geomean3(rnorm(20)): X contains
negative values, so the geometric mean

makes no sense.

[1] NaN

X <- rlnorm(20)
x[sample(20, 5)] <- NA

geomean(x, c(1.5, 9))

Warning in if (na.rm) x <- x[!is.na(x)]:
the condition has length > 1 and only the
first element will be used

[1] ©0.990337

use first(c(1.5, 0))

[1] 1.5

Warning message:

Only the first value of ‘c(1.5, 0)’ will
be used.

coerce _to(c(1.5, @), "logical")

[1] TRUE FALSE

Warning message:

Coercing c(1.5, ©) to class ‘logical’.

na.rm <- coerce to(use first(na.rm), "logical")

geomean4(x, c(1.5, 9))

Warning: Only the first value of
be used.

Warning: Coercing use_ first(na.rm) to class
'logical’.

[1] ©.990337

na.rm' will

evelopment—time
testing with

testthat

Sibtinig:

e RS

hypotenuse <- function(x, y)

{
¥

sgrt(x ~ 2 +y N 2)

test that(
"hypotenuse, with inputs x = 3 and y = 4,
returns 5",
{
expected <- 5
actual <- hypotenuse(3, 4)
expect equal(actual, expected)

}
)

test that(

"hypotenuse, with no inputs, throws an
error”,

{

expect_error(
hypotenuse(),

‘argument "x" 1s missing, with no
default’

)
¥
)

Other common variants of expectations are:

- expect_true, expect false and expect null, which are
shortcuts for checking those common return types.

- expect _warning, expect message and expect output, for
testing feedback, which work like expect_error.

You may also occasionally come across these rare expectations:

- expect_less_than and expect_greater than, for numeric
Inequalities.

- expect _identical, a stricter check than expect equal.

- match, for matching strings using regular expressions.

- is, for checking the class of variables.

test that(
"min, with a zero-length input, returns infinity
with a warning",
{
expected <- Inf
expect _warning(
actual <- min(numeric()),
"no non-missing arguments to min; returning Inf"

)

expect equal(actual, expected)

test that(
"hypotenuse, with a NULL input, returns NULL",

{
expect null(hypotenuse(3, NULL))

}
)

test that(
"hypotenuse, with a NULL input, returns NULL",
{
expect null(hypotenuse(3, NULL))
}
)

Error: Test failed: 'hypotenuse, with a NULL
input, returns NULL'
Not expected: hypotenuse(3, NULL) isn't null.

actual <- hypotenuse(3, NULL)

label <- paste(
"hypotenuse(3, NULL) =",
deparse(actual)

)
expect null(actual, label = label)

Error: Test failed: 'hypotenuse, with a NULL
input, returns NULL'

Not expected: hypotenuse(3, NULL) = numeric(0)
isn't null.

P branch: master ~ testthat / tests / +

Start work on R5tudio reporter

3 hadley authored on 14 Apr

I testthat Start work on RStudio reporter

=) testthat.R added skip support to testthat_results handling. removed parallel imp...

library(testthat)
library(devtools)
library(yourpackage)

with envvar(
c(LANG = "en_US"),
test package("yourpackage")

)

P branch: master » testthat / tests / testthat / +

Start work on RStudio reporter

L hadley authored on 14 Apr

M test dir Move tests to new home

=) context.r Move to modern testing infrastructure

=S helper-assign.R Add test for helpers

=] one.rds Adding equals_reference expectation, documentation and test
=3 test-bare.r Start work on RStudio reporter

= test-basics.r Move to modern testing infrastructure

@ tactornlnnir r Rattar nntinn eattinn in ~nlonir taet

Exercises

> repeat{message("Don't Repeat Yourself")}

Don't
Don't
Don't
Don't
Don't
Don't
Don't
Don't
Don't
Don't
Don't
Don't
Don't
Don't

Re
Re
Re
=
Re
Re
Re
Re
Re
Re
Re
Re
Re
Re

peat
peat
peat
peat
peat
peat
peat
peat
peat
peat
peat
peat
peat
peat

Yourself
Yourself
Yourself
Yourself
Yourself
Yourself
Yourself
Yourself
Yourself
Yourself
Yourself
Yourself
Yourself
Yourself

Every piece of knowledge must have a
single, unambiguous, authoritative

representation within a system.
c2.com

Duplicated code is bad code: anything
that appears in two or more places in a
program will eventuadlly be wrong in at

least one.
softwarecarpentry.org

Nl

'|

|'-..|' |I

l

I:..:jl_ﬁ III'..I'-J. P

1llll'q.|l. JEF'-
i = |y o O

Hij inky h=im
e Y u,;g‘.

(AL I.H.-. 1.!..-\.'-._]I

On a good day, you can keep 7 (give or
take 2) things in your working memory
Miller's law, paraphrased

On a good day, you can keep 7 (give or
take 2) things in your working memory
Miller's law, paraphrased

Most of your R functions should be

seven lines or less
Cotton's corollary

s

e

Cyclomatic complexity measures the
number of linearly independent paths
through the method, which is
determined by the number and
complexity of conditional branches. A
low cyclomatic complexity generally
iIndicates a method that is easy to

understand, test, and maintain.
microsoft.com

cyclo single path <- function()

{
message("Hello World!")

}

Cyclomatic complexity = 1

cyclo if <- function(condition)

{

if(condition)

{
message("Hello World!")

}
}

Cyclomatic complexity = 2 or 3

cyclo switch <- function(date)

{

switch(
weekdays(date),
Monday = message("The day is Monday!"),
Tuesday = message("The day is Tuesday!"),

Wednesday = message("The day is Wednesday!"),
Thursday = message("The day is Thursday!"),

Friday = message("The day is Friday!"),
Saturday = message("The day is Saturday!"),
Sunday = message("The day is Sunday!"),

message("The input date is missing")

Cyclomatic complexity = 8 or 9

e
Pt ¥
il

1 T i S O O

wa Protlem has | W
6 your SComms

Pro. ar
t -r'm‘l |1‘“i:|

If this 18 =l
rasTart your
these steps:

check tn m.ﬁ
IT this 18
for any wind

|
1f problems . GI Gr
or software, ’
If you nead -
YOour computal

s@iagct sala o1

et Faill Often

XFFFFEFEBO003 Y

Make each module fail fast — either it

does the right thing or It stops.
Jim Gray

Exercises

	Title
	Links
	Itinerary
	The short version
	Act like a tester
	assertive title
	counts1
	counts2
	counts3
	counts4
	counts5
	counts6
	counts7
	counts8
	is_ functions, scalar1
	is_ functions, scalar2
	is_ functions, vector1
	is_ functions, vector2
	variable types
	variable sizes
	missing values
	number ranges
	number properties
	attributes
	files and connections
	times and dates
	sets
	complex data types
	reflection1
	reflection2
	code
	geomean1
	geomean2
	geomean3
	geomean4
	geomean5
	geomean6
	geomean7
	assertive examples
	testthat title
	hypotenuse
	test numbers
	test error
	more test types
	compound testing
	test null1
	test null2
	labelled test
	where tests go1
	where tests go2
	testthat exercises
	dont repeat yourself
	dont repeat yourself (again)
	keep it simple, stupid
	miller's law
	cotton's corollary
	cyclomatic complexity
	cc definition
	cc1
	cc if
	cc switch
	fail early fail often
	failfast
	good code exercises

